
 

THE OPTIMIZATION OF GRAPHENE SENSING LAYER AGAINST  

Escherichia coli  

 

 

 

 

 

ATQIYA MUSLIHATI 

 

 

 

 

 

This Thesis submitted in  

fulfillment of the requirement for the award of the  

Degree of Master of Science 

 

 

 

 

 

Faculty of Applied Sciences and Technology 

Universiti Tun Hussein Onn Malaysia 

 

 

 

 

MARCH 2021  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



ii 

I hereby declare that the work in this thesis is my own except for quotations and 

summaries which have been duly acknowledged 

 

 

 

 

Student  :   

ATQIYA MUSLIHATI 

Date   :  21 MARCH 2021 

 

 

Supervisor  :   

ASSOC. PROF. TS. DR. HATIJAH BASRI 

 

 

 

Co Supervisor :   

DR. MARLIA MORSIN  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



iii 

 

This thesis is dedicated to my beloved family. My father, mother, husband, and 

siblings  for their endless support, love, and prayers.

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



iv 

ACKNOWLEDGEMENT 

First of all, praises to Allah who has given me so many mercies, blessings, and healthy 

body till I can complete this research project. I would like to express my sincere 

appreciation to my supervisors; Assoc. Prof. Dr. Ts. Hatijah Basri, Assoc. Prof. Dr. 

Mohd. Zainizan Sahdan and Dr. Marlia Morsin for the support given throughout the 

research project. 

 I would also like to thank MiNT–SRC staffs and technicians wish for all the 

encouragement and guidance during the completion of my research. I am also indebted 

all my lab colleagues (Norhidayah, Liyana, and Azman) for their support along the 

way. Never least, big thanks are also wished for my Persatuan Pelajar Indonesia (Dafit, 

Kusnanto, Praja, Pramugara, Hadi, Menik, Devi, Khilda, Ria, Rani and everyone that 

I cannot mention personally) for the support and motivation.  

 My deepest honour is also delivered to Hj. Salleh’s family for their love and 

prayers. Finally, I thank all who have helped me directly or indirectly in the successful 

completion of my thesis.
PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



v 

ABSTRACT 

In the last decade, biosensor have been developed to detect E. coli. The system is 

complex with a receptor detecting specific target and producing a signal transducer to 

be a readout data. Previous E. coli sensors lacked selectivity, that potentially could 

detect other bacteria. In order to rectify this problem, this study aims to investigate the 

immobilization of anti–O and K E. coli antibodies on a SiO2/graphene film through 

the usage of a Pyrene butyric acid N–hydroxysuccinimide (PBANHS) linker. The 

investigation used some instruments like Raman spectroscopy, Atomic Force 

Microscopy (AFM), Field Effect Scanning Electron Microscopy (FE–SEM), and 

Current–Voltage (I–V) meter. In this research, the antibody was successfully 

immobilized on SiO2/graphene evidenced by the presence of pyrene (C–C) peak at 

<1000 cm–1 and (S–H) hybridization peak at 2506.25 cm–1 as PBANHS/anti–O and K 

E. coli antibody fingerprint in Raman spectra. Graphene height surface distribution 

increased 7.893 nm after PBANHS assembly and 0.364 nm after antibody 

immobilization. On the other hand, graphene maximum height decreased 0.46 nm after 

PBANHS assembly and 0.33 nm after antibody immobilization. Based on the electrical 

resistance, the sensing layer was able to detect E. coli against Staphylococcus aureus 

(S. aureus) with resistance difference 3.97 Ω and Limit of Detection (LOD) 16 

CFU/mL. FE–SEM image shows the dispersion and attachment of E coli on the surface 

of the sensing layer, compared to the clustering of S. aureus. This new investigation 

lead to a new potential of specific immobilized anti–O and K E. coli antibodies on 

SiO2/graphene film as a selective sensing layer on E. coli sensor system.  
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ABSTRAK 

Dalam dekad yang lalu, biosensor telah dikembangkan untuk mengesan E. coli. Sistem 

ini kompleks dengan reseptor yang mengesan sasaran tertentu dan menghasilkan 

transduser isyarat untuk menjadi bacaan. Sensor E. coli sebelumnya tidak mempunyai 

selektiviti, yang berpotensi dapat mengesan bakteria lain. Untuk membetulkan 

masalah ini, kajian ini bertujuan untuk menyiasat imobilisasi antibodi anti–O dan K E. 

coli pada lapisan graphene melalui pautan Pyrene asid butirik N–hidroksisuccinimida 

(PBANHS). Penyelidikan ini menggunakan beberapa instrumen seperti: Raman 

spektroskopi, Atomic Force Mikroskopi (AFM), Field Effect Scanning Elektron 

Mikroskopi (FE–SEM), dan Elektrik–Voltan (I–V) meter. Dalam penyelidikan ini, 

antibodi berjaya diimobilisasi pada SiO2/graphene yang dibuktikan dengan adanya 

puncak pirena (C–C) pada <1000 cm–1 dan (S–H) puncak hibridisasi pada 2506.25 cm–

1 sebagai cap jari PBANHS/antibody anti–O dan K E. coli dalam spektrum Raman. 

Taburan permukaan ketinggian graphene meningkat 7.893 nm selepas pemasangan 

PBANHS dan 0.364 nm selepas imobilisasi antibodi. Sebaliknya, ketinggian 

maksimum graphene menurun 0.46 nm selepas pemasangan PBANHS dan 0.33 nm 

selepas imobilisasi antibodi. Berdasarkan nilai kerintangan elektrik, lapisan 

penginderaan menunjukan kepilihan lebih tinggi untuk mengesan E. coli berbanding 

Staphylococcus aureus (S. aureus) dengan perbedaan nilai kerintangan elektrik 3.97 

Ω an Had Pengesanan (LOD) 16  CFU/mL. Lampiran imej FE–SEM E. coli juga 

menunjukkan penyebaran di atas permukaan daripada S. aureus yang dilekatkan pada 

satu tapak yang dipeluwap. Penemuan penting ini membawa kepada potensi baru 

antibodi anti–O dan K E. coli tertentu pada graphene sebagai lapisan penderia selektif 

pada sistem pengesan E. coli.  
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CHAPTER 1  

INTRODUCTION 

1.1  Background of study 

In the last decade, biosensor solved the problem of individual samples’ detection. 

Biosensor is an analytical device that contains immobilized biological compartments 

which can detect a target analyte by using specific and targeted reactions, thus allowing 

for rapid analysis of a sample. A biosensor consists of biocatalyst/bioreceptor, and a 

transducer which requires high selectivity [17]–[19]. A wide array of biomolecules 

have been used as bioreceptors for the purpose of bacteria detection, including 

antibodies, nucleic acids, phages, and aptamers [20]–[23]. In particular, antibodies 

have been the preferred element due to their ability to bond to specific antigens in the 

immune system, easy extraction by engineering methods, and working naturally after 

being functionalized. Nucleic acids, aptamers, and their derivatives are less used 

because some species have low copy number of Deoxyribonucleic Acid (DNA), while 

phages are difficult to isolate, small, and potentially dangerous in the environment 

[24], [25].  

E. coli has been spreading a big disease as World Health Organization (WHO) 

stated in May 2017 that 525.000 children under 5 years old died. It happens every year 

due to disease related to E. coli contamination. At the same time, there are nearly 1.7 

billion cases of childhood diarrheal disease across the globe each year. Generally, 

pathogenic E. coli are found in food, animals, humans, and all sort environment as the 

human faecal waste spreading among them. The cell wall of E. coli plays an important 

role in mobile activity for survival in various environments, like adhering to another 

cell or surface. As an enteric bacteria, lipopolysaccharides on the cell wall have O–

polysaccharides towards the exterior of the lipopolysaccharides, and K capsular 
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polysaccharides as the capsular identity that occupy about 75% of bacterial surface 

area [26]. O–polysaccharides, coded by specific genes such as rfb, are O–antigens that 

can bind to anti O–polysaccharides [27]. Anti–O and K E. coli antibodies molecules 

can be easily engineered from animals, making production easy. Moreover, anti–O and 

K E. coli antibodies can be immobilized on a surface, thus allowing them to be used 

as a bioreceptor in biosensors. The use of cross–linkers help to connect the antibody 

onto the surface during the process of immobilization in the functionalization of the 

antibody [28].  

Graphene provides carboxyl groups with many superior characteristics. With a 

special two–dimensional (2D) structure and sp2 carbon bonds, graphene is a 

nanomaterial that has strong carrier mobility and electrical conductivity at room 

temperature (up to ~10,000 cm2/V s), a large surface area (SSA of 2600 m2g–1), and 

good biocompatibility [29]–[31]. It has been used to develop electrical components in 

many devices, including biosensors. Some linkers have been developed in the 

biosensor formation. Pyrene butyric acid N–Hydroxysuccinimide (PBANHS) is one 

of the developed linkers as an activator reagent for the carboxylic acid, which consists 

of hydrophobic headgroup π–π stacking system. Succinimidyl ester groups are 

strongly bound to the nucleophilic substitution by amine groups on the antibody. 

However, the usage of PBANHS decreased sensing layer preparation both time 

reaction and cost without using 1–ethyl–3–(3–dimethylaminopropyl carbodiimide 

hydrochloride) (EDC) coupled to N–hydroxysuccinimide (NHS) reaction to activate 

carboxylic acid group [32].  

The sensing layer is the main part of the biosensor leading to the advance 

probed which distinguishes the target bacteria from non–target bacteria [20]. Different 

assemblies and formations of the sensing layer have been explored. These formations 

produced different outputs due to the optimization of the sensing layer. Yang et al 

(2016) developed an E. coli sensor with gold electrode–based electrochemical 

impedance. Electrochemical transducers produce an electrical charge between the 

electrode and electrolyte of oxidation–reduction reaction (redox) [33]. When the 

bacteria attach to the surface, electron transfer will be blocked and impedance is 

increased [34]. However, electrochemical transducers need additional reagents called 

electrolytes as the sample medium causes redox reactions that increase the complexity 

of the biosensor test.  

PTTA
PERPUS

TAKAAN
 TUNKU

 TUN A
MINAH



3 

Kim et al (2002) explored the functionalization of antibodies for E. coli 

detection. E. coli antibodies were immobilized through an optical system based on 

surface plasmon resonance, a reflection of light from a thin metal film that shifts the 

reflectance index when any binding occurs on the sensor [35]. The optical approach 

led to high fabrication costs and complex reactions because it required labels to detect 

E. coli. Furthermore, E. coli antibodies were also functionalized as bioreceptors on a 

graphene film through PBANHS linkers which provide amine linkage for antibody 

immobilization by π–π interaction with the graphene film [36]. Most of the graphene 

sensors were modified in–field effect transistor (FET) by measuring the bias current 

(Ids) by the signal process, and would produce a signal response when E. coli solution 

was added onto the sensor’s recording chamber. Graphene acted as a conducting 

channel across two metal electrodes, namely source and drain, which the current was 

conveyed. Nevertheless, FET was still more costly than the general common transistor 

[37]–[39]. 

Wibowo et al (2018) fabricated an E. coli sensor based on the graphene 

resistivity by relying on the negative charge of E. coli. The resistivity of the graphene 

decreases when the number of bacteria increases, causing an increase in current flow 

due to the negative charge of E. coli which induced current via holes in the graphene. 

When the number of bacteria increased from 4 to 273 CFUs on the sensing layer, the 

resistance of the the graphene gradually decreased from 4.371 to 3.903 Ω. 

Unfortunately, because this simple approach did not use specific biomolecules to 

optimize selectivity, it detected other negatively charged particles such as markers, 

dust, or other bacteria, thus making it incompatible for usage as an E. coli sensor [40].   

1.2  Problems statement 

In recent years, E. coli biosensors have been developed. However, these sensors are 

not selective enough, detecting other analytes that causing unreliable results. It is 

understood that the sensor element is a core component of biosensors. Hence, it is 

crucial that these elements have the appropriate selectivity, sensitivity, and stability. 

Briefly, graphene has a wide surface, high carrier mobility, and is a biocompatible 

material. It is a promising candidate for the sensing layer scaffold. Additionally, anti–

O and K E. coli antibodies are easily synthesized. As the selective agents, these 
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antibodies could bind to O–lipopolysaccharides and K–capsular polysaccharides on 

the cell wall of E. coli that occupy as the most part on bacterial surface. Pyrene butyric 

acid N–hydroxysuccinimide (PBANHS) is known as the most used linker on graphene 

and antibody immobilization. However, the method of immobilization, compaction, 

and formation of antibodies onto the graphene film is still in a problem and need to be 

optimized. 

1.3  Objectives of study 

1. To immobilize anti–O and K E. coli antibodies on graphene film using 

PBANHS linkers  

2. To characterize the assembled PBANHS linkers and immobilized anti–O and 

K E. coli antibodies on graphene film using AFM, FE–SEM and Raman 

Spectroscopy 

3. To test the electrical resistance of graphene sensing layer for E. coli detection 

1.4  Scopes of study 

1. The anti–O & K E. coli antibodies immobilization was conducted via PBANHS 

linker 

2. Commercial 0.5 × 0.5 cm 2D SiO2/graphene was used as the sensing layer 

3. The characterization of graphene sensing layer development was carried out 

using AFM, FE–SEM and Raman Spectroscopy 

4. The graphene sensing layer was tested via I–V measurement on its electrical 

resistance 

5. FE–SEM analysis was conducted to investigate the selectivity of the graphene 

sensing layer against E. coli and S. aureus
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CHAPTER 2  

LITERATURE REVIEW 

2.1  Escherichia coli 

2.1.1 Structure of Escherichia coli 

E. coli is commonly seen under microscope with hemispherical caps in a cylindrical 

tube. The cell covered with the envelope contains of three layers as special 

characteristic of Gram–negative bacteria. Cytoplasmic membrane, peptidoglycan or 

murein layer, and the outer membrane with lipopolysaccharide lie down at the outer 

cell [41]. Outer membrane as the cell wall is 20 nm thick barrier and highly 

impermeable with asymmetric bilayer. Biological membrane generally is structured in 

a lipid bilayer with partial asymmetry. Differentially, outer membrane created unique 

impermeable layer with composed lipopolysaccharide (LPS) molecule in outer leaflet 

contains of phosphorylated sugar chains in various length in formation of hydrophobic 

lipid A. A tight membrane enables overcoming environmental molecules with cation 

divalent cross–link anionic LPS system while hydrated saccharide chains avoid the 

ingress an active molecule to surface, and the inner hydrophobic refuse hydrophilic 

substances. Outer membrane proteins (OMPs) is responsible in nutrients that the cell 

needs through selective absorption [42].  

 Peptidoglycan (murein) is also the main structural that contributes in 

preserving the integration of cell by withstanding the turgor formed between 

cytoplasmic membrane and the outer membrane. Moreover, peptidoglycan also 

contributes to the cell shape maintenance and provides as a substrate for anchoring 

other components of other cell envelope like proteins and teichoic acids [43]. The core 

peptidoglycan consists of linear glycan strands cross–linked from short peptides. The 
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